Strategies for Solving Mixture Problems

- #1. Go straight to the algebra.
- #2. Build a table of just what you're given.
- #3. Build a table of what you're given AND what you've figured out.

Each has advantages and drawbacks.

Slide 1 of 8

Strategy #1 – Go Straight to Algebra

"How many pounds of chocolate-covered raisins costing \$3.40 per pound and how many pounds of malted milk balls costing \$3.00 per pound must be combined to create 10 pounds of a mixture costing \$3.25 per pound?"

$$3.40 \cdot x + 3.00 \cdot (10 - x) = \$32.50$$

Obvious question:

"Where did that formula come from?"

Good for rapid calculation on small problems. Breaks with larger problems; may require further explanation with a skeptical consumer.

Slide 2 of 8

Strategy #2 – Build A Table Of Just What You're Given

Item	Pounds	\$ per pound
Chocolate Raisins	X	3.40
Malted Milk Balls	10- <i>x</i>	3.00
Mixture	10	3.25

$$3.40 \cdot x + 3.00 \cdot (10 - x) = 3.25 \cdot 10$$

Good intermediate form.

Still leaves some questions: "Why 3.40 times *x* ?" Also breaks on larger & more complex problems.

Slide 3 of 8

Strategy #3 – Build A Table Of What You're Given AND What You've Figured Out

Item	Pounds	\$ per pound	\$ for this item
Chocolate Raisins	x	3.40	$3.40 \cdot x$
Malted Milk Balls	10 - x	3.00	$3.00 \cdot (10-x)$
			$3.40 \cdot x +$
			$3.00 \cdot (10-x)$
			=
Mixture	10	3.25	3.25 ·10

$$3.40 \cdot x + 3.00 \cdot (10 - x) = 3.25 \cdot 10$$

Wordy, but doesn't leave many questions. Scales well to larger and more complex problems.

Slide 4 of 8

Notice the Pattern

Multiply Across Rows

Item	Pounds	\$ per pound	\$ for this item
Chocolate Raisins	X	3.40	$3.40 \cdot x$
Malted Milk Balls	10-x	3.00	$3.00 \cdot (10-x)$
			$3.40 \cdot x +$
			$3.00 \cdot (10-x)$
			=
Mixture	10	3.25	3.25 ·10

 $3.40 \cdot x + 3.00 \cdot (10 - x) = 3.25 \cdot 10$

Cost of Raisins + Cost of Malted Milk Balls = Cost of Mixture

Slide 5 of 8

Add / Subtract Within Columns

Other Problems Have The Same Pattern

Multiply Across

Waltiply Across				
Item	\$ invested	Interest	\$ interest	
		rate		
Savings #1	2500	4.25% =	2500 · 0.0425	
		0.0425	= 106.25	Add /
Savings #2	1500	x	1500 · x	Subtract
			106.25 +	Within
			$1500 \cdot x$	Columns
			=	
Combined Savings	(4000)	(0.05)	200	

 $106.25 + 1500 \cdot x = 200$

Interest #1 + Interest #2 = Combined Interest

Slide 6 of 8

Many Problems Have The Same Structure, But Sometimes It's Harder To See

"How many quarts of 90% solution have to be added to 12 quarts of 50% solution to create 75% solution"

Item	Quarts of solution	Concentration of pure "stuff"	Quarts of pure "stuff"
Solution #1	X	90% = 0.90	$0.90 \cdot x$
Solution #2	12	50% = 0.5	12 · 0.5
			$0.90 \cdot x + $
			12 · 0.5
			=
Mixture	$\frac{12 + x}{1}$	75% = 0.75	$0.75 \cdot (12 + x)$

$$0.90 \cdot x + 12 \cdot 0.5 = 0.75 \cdot (12 + x)$$

Qts of pure stuff in #1 + Qts of pure stuff in #2 = Qts of pure stuff in the mixture

Slide 7 of 8

