Exponential Improvement of Memory Density

Math 101, Littlefield

The above picture shows representative units of computer memory from 1968 and 2007.

In 1968, magnetic core technology yielded a memory module of 6 KB (yes, 6 thousand bytes) using 5 pounds of material.

In 2007, compact flash silicon technology yielded a memory module of 1 GB (one billion bytes) using 1.6 grams of material.

In terms of memory density (bytes per gram), this represents an improvement of a factor of roughly 2.5×10^8 (250 million).¹

Assuming that the improvement was exponential, what was the rate?

There are a couple of good ways to think about this. One of them is to ask about the growth factor per year, a second is to ask about the doubling period.

To find the growth factor per year, we first compute the number of years (2007-1968=39) and then ask what value of g is required such that $g^{39} = 2.5 \times 10^8$. We can do that with powers or logarithms², or Goal Seek or Solver. The answer is g = 1.64 (64% per year).

To find the doubling period, we might first ask how many doubling periods are required. That is, find N such that $2^N = 2.5 \times 10^8$. Again, we can do that with logarithms³ or with Goal Seek or Solver. The answer is N = 27.9. Then simply divide 39 years by 27.9 periods to find the doubling period P = 1.40 years, or in other units, P = 16.8 months.

When people speak of Moore's Law – "doubling every 18 months" – this is what they're talking about.

By the way, you might notice that this growth rate is so rapid that Dr.Bartlett's "Rule of 70" starts to lose accuracy. At 64% per year, the Rule of 70 would predict a doubling period of 70/64 = 1.09 years, not the actual 1.40 years.

¹ The calculation is (1GB / 1.6gm) / (6KB / (5 lb * 454 gm/lb)).

² Using powers, $g = (2.5 \times 10^8)^{4}(1/39)$. Using logarithms, $\log_{10}(g^{39}) = \log_{10}(2.5 \times 10^8)$, so $39*\log_{10}(g) = \log_{10}(2.5 \times 10^8)$, so $\log_{10}(g) = 8.398/39 = 0.215$, $g = 10^{0.215} = 1.66$. Goal Seek or Solver would be much more reliable!

³ The calculation is $\log_{10}(2^N) = \log_{10}(2.5 \times 10^8)$, so $N^* \log_{10}(2) = 8.398$, $N = 8.398 / \log_{10}(2) = 28.4$.